Susceptible-infected-susceptible model: a comparison of N-intertwined and heterogeneous mean-field approximations.
نویسندگان
چکیده
We introduce the ε-susceptible-infected-susceptible (SIS) spreading model, which is taken as a benchmark for the comparison between the N-intertwined approximation and the Pastor-Satorras and Vespignani heterogeneous mean-field (HMF) approximation of the SIS model. The N-intertwined approximation, the HMF approximation, and the ε-SIS spreading model are compared for different graph types. We focus on the epidemic threshold and the steady-state fraction of infected nodes in networks with different degree distributions. Overall, the N-intertwined approximation is superior to the HMF approximation. The N-intertwined approximation is exactly the same as the HMF approximation in regular graphs. However, for some special graph types, such as the square lattice graph and the path graph, the two mean-field approximations are both very different from the ε-SIS spreading model.
منابع مشابه
Unified mean-field framework for susceptible-infected-susceptible epidemics on networks, based on graph partitioning and the isoperimetric inequality.
We propose an approximation framework that unifies and generalizes a number of existing mean-field approximation methods for the susceptible-infected-susceptible (SIS) epidemic model on complex networks. We derive the framework, which we call the unified mean-field framework (UMFF), as a set of approximations of the exact Markovian SIS equations. Our main novelty is that we describe the mean-fi...
متن کاملSusceptible-infected-susceptible epidemics on the complete graph and the star graph: exact analysis.
Since mean-field approximations for susceptible-infected-susceptible (SIS) epidemics do not always predict the correct scaling of the epidemic threshold of the SIS metastable regime, we propose two novel approaches: (a) an ε-SIS generalized model and (b) a modified SIS model that prevents the epidemic from dying out (i.e., without the complicating absorbing SIS state). Both adaptations of the S...
متن کاملSecond-order mean-field susceptible-infected-susceptible epidemic threshold.
Given the adjacency matrix A of a network, we present a second-order mean-field expansion that improves on the first-order N-intertwined susceptible-infected-susceptible (SIS) epidemic model. Unexpectedly, we found that, in contrast to first-order, second-order mean-field theory is not always possible: the network size N should be large enough. Under the assumption of large N, we show that the ...
متن کاملThe Accuracy of Mean-Field Approximation for Susceptible-Infected-Susceptible Epidemic Spreading with Heterogeneous Infection Rates
The epidemic spreading over a network has been studied for years by applying the mean-field approach in both homogeneous case, where each node may get infected by an infected neighbor with the same rate, and heterogeneous case, where the infection rates between different pairs of nodes are also different. Researchers have discussed whether the mean-field approaches could accurately describe the...
متن کاملNodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated.
By invoking the famous Fortuin, Kasteleyn, and Ginibre (FKG) inequality, we prove the conjecture that the correlation of infection at the same time between any pair of nodes in a network cannot be negative for (exact) Markovian susceptible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) epidemics on networks. The truth of the conjecture establishes that the N-intertwined mean-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 86 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2012